Problem Selection
Chapter 1: Sentential Logic
1.1 Deductive Reasoning and Logical Connectives
1 F
5 F
7 F
1.2 Truth Tables
1 F
3 F
4 F
8ab F
9a F
10 F
11 F
12 F
13 F
16 F
18 F
1.3 Variables and Sets
4 F
5 F
7 F
9 F
1.4 Operations on Sets
1 F
4 F
5 F
10 F
13 F
1.5 The Conditional and Biconditional Connectives
1 F
6 F
7 F
9 F
11 F
Chapter 2:Quantificational Logic
2.1 Quantifiers
3 F
5 F
7 F
8 F
9 F
10 F
2.2 Equivalence Involving Quantifiers
1 F
3 F
4 F
5 F
6 F
7 F
8 F
9 F
10 F
14 F
15 F
2.3 More Operations on Sets
1 F
3 F
8 F
12 F
13 F
15 F
Chapter 3: Proofs
3.1 Proof Strategies
1 F
3 F
5 F
8 F
14 F
15 F
16 F
17 F
3.2. Proofs Involving Negations and Conditionals
1 F
2 F
5 F
6 F
11 F
12 F
13 F
3.3 Proofs Involving Quantifiers
1 F
2 F
5 F
7 F
15 F
18 F
19 F
20 F
21 F
22 F
23 F
24 F
3.4 Proofs Involving Conjunctions and Biconditionals
1 F
2 F
8 F
10 F
11 F
12 F
26 F
27 F
3.5 Proofs Involving Disjunctions
1 F
5 F
8 F
10 F
13 F
27 F
28 F
29 F
31 F
3.6 Existence and Uniqueness Proofs
1 F
6 F
10 F
13 F
3.7 More Examples of Proofs
6 F
10 F
Chapter 4: Relations
4.1 Ordered Pairs and Cartesian Products
3 F
5 F
6 F
7 F (no need to prove)
8 F
12 F
13 F
15 F
4.2 Relations
5 F
7 F
9 F
10 F
11 F
12 F
13 F
4.3 More about Relations
3 F
4 F
7 F
8 F
9 F
10 F
11 F
12 F
13 F
17 F
19 F
22 F
24 F
4.4 Ordering Relations
1 F
3 F
4 F
6 F
14 F
17 F
19 F
23 F
4.5 Equivalence Relations
1 F
2 F
8 F
11 F
12 F
13 F
14 F
Chapter 5: Functions
5.1 Functions
1(a)(b) F
3 F
7(a)(b) F
8 F
9 F
12 F
20 F
21 F
5.2: One-to-One and Onto
5 F
6 F
7 F
10 F
11 F
13 F
5.3: Inverses of Functions
3 F
8 F
9 F
11 F
18 F
5.4: Closures
1 F
5 F
11 F
12 F
5.5: Images and Inverse Images: A Research Project
1 F
2 F
3 F
4 F
5 F
6 F
7 F
Chapter 6 Mathematical Induction
Proof by Mathematical Induction
1 F
4 F
7 F
9.(a) F
15 F
16 F
19 F
20 F
6.2 More Examples
6 F
17 F
18 F
6.3 Recursion
1 F
5 F
7 F
16 F
18 F
19 F
6.4 Strong Induction
2 F
3 F
11 F
6.5 Closures again
1 F
2 F
4 F
Chapter 7: Number Theory
7.1 Greatest common Divisors
2(a) F
5 F
7 F
11 F
12 F
7.2: Prime Factorization
4 F
5 F
6 F
9 F
11 F
13 F
7.3: Modular Arithmetic
1 F
2 F
3 F
4 F
5 F
6 F
7 F
8 F
10 F
17 F
18 F
19 F
20(b) F
7.4: Euler’s Theorem
1 F
2 F
5 F
6 F
7 F
10 F
11 F
15 F
7.5: Public-Key Cryptography
4 F
6 F
7 F
Chapter 8: Infinite Sets
8.1 Equinumerous Sets
1 F
2 F
3(a)(b)(c) F
6 F
7 F
8 F
9 F
10 F
11 F
14 F
15 F
17 F
21 F
22(a) F
23(a)(b)(c) F
24(a)(b) F
26 F
8.2: Countable and Uncountable Sets
1 F
3 F
4 F
5 F
6 F
12 F
8.3: The Cantor-Schroder-Bernstein Theorem
1 F
2 F
3 F
4 F
5 F
6 F
7 F
12(b) F (note: don’t use (a) but use that R ~ {yes, no}^N and apply properties)
14(a)(b) F (note: similar as above, use properties you know, not an explicit bijection)