Introduction
Problem list
Chapter 1: Sets
Hrbacek 1.1: Introduction to Sets
Hrbacek 1.2: Properties
Hrbacek 1.3: The Axioms
3.1
3.2
3.3
3.4
3.5
3.6
3.7
Hrbacek 1.4: Elementary Operations on Sets
4.3ab (so the manipulations in Velleman are justified by axiom now)
4.4
4.5
4.6
Chapter 2: Relations, Functions and Orderings
Hrbacek 2.1: Ordered Pairs
1.1
1.2
1.4
1.5
Hrbacek 2.2: Relations
2.1
2.2
2.3
2.4
2.6
2.7
Hrbacek 2.3: Functions
3.4
3.5
3.6
3.8
3.9
3.10
3.11
3.12
3.13
Hrbacek 2.4: Equivalence and Partitions
4.2
Hrbacek 2.5: Orderings
5.3
5.5
5.6
5.9
5.11
5.12
5.13
5.14
Chapter 3: Natural Numbers
Hrbacek 3.1: Introduction to Natural Numbers
1.1
Hrbacek 3.2: Properties of Natural Numbers
2.1
2.2
2.3
2.4
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
Hrbacek 3.3: The Recursion Theorem
3.1
3.2
3.4
3.5
3.6
Hrbacek 3.4: Arithmetic of Natural Numbers
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
Hrbacek 3.5: Operations and Structures
5.1
5.4
5.10
5.12
Chapter 4: Finite, countable and uncountable sets
Hrbacek 4.1: Cardinality of Sets (feel free to copy proofs of Velleman if necessary)
1.1
1.3
1.4
1.5
1.6
1.7
Hrbacek 4.2: Finite Sets
2.1
2.2
2.3
2.4
2.7
Hrbacek 4.3: Countable Sets
3.2
3.3
3.4
3.5
3.6
3.10
Hrbacek 4.4: Linear Orderings
4.1
4.2
4.3
4.8
4.10
4.11
4.12
Hrbacek 4.5: Complete Linear Orderings
5.2
5.4
Hrbacek 4.6: Uncountable Sets
6.1
6.2